Regulation of IDO Activity by Oxygen Supply: Inhibitory Effects on Antimicrobial and Immunoregulatory Functions
نویسندگان
چکیده
Tryptophan is an essential amino acid for human beings as well as for some microorganisms. In human cells the interferon-γ (IFN-γ) inducible enzyme indoleamine 2,3-dioxygenase (IDO) reduces local tryptophan levels and is therefore able to mediate broad-spectrum effector functions: IDO activity restricts the growth of various clinically relevant pathogens such as bacteria, parasites and viruses. On the other hand, it has been observed that IDO has immunoregulatory functions as it efficiently controls the activation and survival of T-cells. Although these important effects have been analysed in much detail, they have been observed in vitro using cells cultured in the presence of 20% O₂ (normoxia). Such high oxygen concentrations are not present in vivo especially within infected and inflamed tissues. We therefore analysed IDO-mediated effects under lower oxygen concentrations in vitro and observed that the function of IDO is substantially impaired in tumour cells as well as in native cells. Hypoxia led to reduced IDO expression and as a result to reduced production of kynurenine, the downstream product of tryptophan degradation. Consequently, effector functions of IDO were abrogated under hypoxic conditions: in different human cell lines such as tumour cells (glioblastoma, HeLa) but also in native cells (human foreskin fibroblasts; HFF) IDO lost the capacity to inhibit the growth of bacteria (Staphylococcus aureus), parasites (Toxoplasma gondii) or viruses (herpes simplex virus type 1). Additionally, IDO could no longer efficiently control the proliferation of T-cells that have been co-cultured with IDO expressing HFF cells in vitro. In conclusion, the potent antimicrobial as well as immunoregulatory functions of IDO were substantially impaired under hypoxic conditions that pathophysiologically occurs in vivo.
منابع مشابه
Cytomegalovirus Impairs the Induction of Indoleamine 2,3-Dioxygenase Mediated Antimicrobial and Immunoregulatory Effects in Human Fibroblasts
Human fibroblasts provide immunosuppressive functions that are partly mediated by the tryptophan-catabolizing enzyme indoleamine-2,3-dioxygenase (IDO). Moreover, upon stimulation with inflammatory cytokines human fibroblasts exhibit broad-spectrum antimicrobial effector functions directed against various clinically relevant pathogens and these effects are also IDO-dependent. Therefore human fib...
متن کاملIndoleamine 2,3-Dioxygenase and Immunological Tolerance during Pregnancy
Indoleamine 2,3-dioxygenase (IDO), an enzyme involved in the catabolism of tryptophan, is expressed by a variety of cells and tissues such as macrophages, dendritic cells, cells of the endocrine system and by the placenta. IFN- γ is the main inducer of this enzyme. IDO acts as an important defense mechanism of innate immunity against pathogens. It also has tumor suppressive activity and prolong...
متن کاملInfluence of Tryptophan Contained in 1-Methyl-Tryptophan on Antimicrobial and Immunoregulatory Functions of Indoleamine 2,3-Dioxygenase
Indoleamine 2,3-dioxygenase (IDO) has been identified as an important antimicrobial and immunoregulatory effector molecule essential for the establishment of tolerance by regulating local tryptophan (Trp) concentrations. On the other hand, the immunosuppressive capacity of IDO can have detrimental effects for the host as it can lead to deleterious alterations of the immune response by promoting...
متن کاملThe missing link between indoleamine 2,3-dioxygenase mediated antibacterial and immunoregulatory effects
The interferon (IFN)-gamma-inducible tryptophan degrading enzyme indoleamine 2,3-dioxygenase (IDO) has not only been recognized as a potent antimicrobial effector molecule for the last 25 years but was recently found also to have potent immunoregulatory properties. In this study, we provide evidence that both tryptophan starvation and production of toxic tryptophan metabolites are involved in t...
متن کاملThe Immunoregulatory Effects of Four Allium Species on Macrophages and Lymphocytes Viability
Background: Immune cells perform unique functions against infections and imbalances in immunity associated with various diseases. Applying natural products may control immune responses. Among herbals, much attention has been paid to the immunoregulatory functions of Allium sativum. However, the effects of other Allium species on the immune system have remained undiscovered. Therefore, the curre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013